| Cycling Level of Service Assessment (CLoS) based on LTN 1/20 | | | | | | | | |--|-------------|--|--|--|--|--|--| | Project Number | 60677657 | | | | | | | | Scheme | Ostman Road | | | | | | | | Location | York | | | | | | | | Date | 08/04/2022 | | | | | | | | Version Number | | | | | | | | | Assessment By | MF | | | | | | | Cycling Level of Service (CLOS) | Existing | Option 1 | Option 2 | Option 3 | |----------|----------|----------|----------| | Key Requiremen | t Factor | Design Principle | Indicators | Critical | 0 (Red) | 1 (Amber) | 2 (Green) | | Comments | Score | Comments | Score | Comments | Score | Comments | |----------------|--|--|--|---|--|--|--|------------------------------|--|------------------------------|--|-------------------------|--|------------------------------|--| | | Connections | Cyclists should be able to easily and safely join and navigate
along different sections of the same route and between different
routes in the network. | Ability to join/leave route
safely and easily
considering left and right turns | | Cyclists cannot connect to other routes without dismounting | minimal disruption to | dedicated
connections to
other routes
provided, with no
interruption to | Score
1 | Quiet street cyclsists to ride on carriageway | 1 | Quiet street cyclsists to ride on carriageway | 1 | Quiet street cyclsists to ride on carriageway | 1 | Quiet street cyclsists to ride on carriageway | | Coherence | Continuity and
Wayfinding | Routes should be complete with no gaps in provision. 'End of
route' signs should not be installed - cyclists should be shown
how the route continues. Cyclists should not be 'abandoned',
particularly at junctions where provision may be required to
ensure safe crossing movements. | 2.Provision for cyclists throughout the whole length of the route | | Cyclists are 'abandoned' at points along the route with no clear indication of how to continue their journey. | The route is made up of discrete sections, but cyclists can clearly understand how to navigate between them, including through junctions. | their journey Cyclists are provided with a continuous route, including through junctions | 2 | Connects existing advisory cycle routes of Danebury Avenue / Tostig Avenue. | 2 | Connects existing advisory cycle routes of Danebury Avenue / Tostig Avenue. | 2 | Connects existing advisory cycle routes of Danebury Avenue / Tostig Avenue. | 2 | Connects existing advisory cycle routes of Danebury Avenue / Tostig Avenue. | | | Density of
network | Cycle networks should provide a mesh (or grid) of routes across
the town or city. The density of the network is the distance
between the routes which make up the grid pattern. The ultimate
aim should be a network with a mesh width of 250m. Routes should follow the shortest ootion available and be as near | on mesh width
i.e. distances between primary
and secondary routes within
the network | | Route contributes to a network density mesh width >1000 Deviation factor | Route
contributes to a
network density
mesh width 250
- 1000m | Route
contributes to a
network density
mesh width
<250m | 1 | Sections of the York Cycle
Network within 500m distance. | 1 | Sections of the York Cycle
Network within 500m distance. | 1 | Sections of the York Cycle
Network within 500m distance. | 1 | Sections of the York Cycle
Network within 500m distance. | | | Distance | to the 'as the-crow-flies' distance as possible. | Deviation Factor is calculated
by dividing the actual distance
along the route by the straight
line (crow-fly) distance, or
shortest road alternative. | | against straight
line or shortest
road alternative
>1.4 | against straight line
or shortest road
alternative 1.2 – 1.4 | against straight
line or shortest | 2 | Most direct route | | | of required stops
or give ways | The number of times a cyclist has to stop or loses right of way on a route should be minimised. This includes stopping and give ways at junctions or crossings, motorcycle barriers, pedestrianonly zones etc. | frequency | | The number of
stops or give ways
on the route is
more than 4 per
km | The number of stops
or give ways on the
route is between 2
and 4 per km | | 2 | Scaled from 0.4km scheme | 0 | Scaled from 0.4km scheme | 0 | Scaled from 0.4km scheme | 0 | Scaled from 0.4km scheme | | | Time: Delay at junctions | The length of delay caused by junctions should be minimised.
This includes assessing impact of multiple or single stage
crossings, signal timings, toucan crossings etc. | 6.Delay at junctions | | Delay for cyclists
at junctions is
greater than for
motor vehicles | Delay for cyclists at
junctions is similar to
delay for motor
vehicles | Delay is shorter
than for motor
vehicles or
cyclists are not
required to stop at
junctions (e.g.
bypass at signals) | 1 | Cyclists ride with other motor vehicles | 1 | Cyclists ride with other motor vehicles | 1 | Cyclists ride with other motor vehicles | 1 | Cyclists ride with other motor vehicles | | | Time: Delay on links | The length of delay caused by not being able to bypass slow moving traffic. | 7.Ability to maintain own speed on links | | Cyclists travel at
speed of slowest
vehicle (including
a cycle) ahead | pass slow traffic and other cyclists | appropriate speed. | 0 | Width doesn't account for
overtaking on on-street quiet
route | 0 | Width doesn't account for
overtaking on on-street quiet
route | 0 | Width doesn't account for
overtaking on on-street quiet
route | 0 | Width doesn't account for
overtaking on on-street quiet
route | | | Gradients | Routes should avoid steep gradents where possible. Uphill
sections increase time, effort and discomfort. Where these are
encountered, routes should be planned to minimise climbing
gradent and allow users to retain momentum gained on the
descent. | 8.Gradient | | Route includes
sections steeper
than the gradients
recommended in
Figure 4.4 | gradients
recommended in
Figure 4.4 | There are no
sections of route
which steeper
than 2% | 2 | 1.9% 20ft over 0.2 miles | | | Reduce/remove
speed differences
where cyclists are
sharing the
carriageway | Where cyclists and motor vehicles are sharing the carriageway, the key to reducing severity of collisions is reducing the speeds of motor vehicles so that they more closely match that of cyclists. This is particularly important at points where risk of collision is greater, such as at junctions. | approach and through
junctions where cyclists
are sharing the
carriageway through the
junction | 85th percentile > 37mph (60kph) | 85th percentile
>30mph | 85th percentile
20mph-30mph | 85th percentile
<20mph | 2 | Lanes between 3m and 3.2m
and assume Motor Traffic Flow
<2000pcu/24hr and 20mph
speed limit | 2 | Lanes between 3m and 3.2m
and assume Motor Traffic Flow
<2000pcu/24hr and 20mph
speed limit | 2 | Lanes between 3m and 3.2m
and assume Motor Traffic Flow
<2000pcu/24hr and 20mph
speed limit | 2 | Lanes between 3m and 3.2m
and assume Motor Traffic Flow
<2000pcu/24hr and 20mph
speed limit | | | Avoid high motor | Cyclists should not be required to share the carriageway with | | 85th percentile > 37mph (60kph) >10000 AADT, | 85th percentile
>30mph
5000-10000 | 85th percentile
20mph-30mph
2500-5000 and | 85th percentile
<20mph
0-2500 AADT | 2 | Lanes between 3m and 3.2m
and assume Motor Traffic Flow
<2000pcu/24hr and 20mph
speed limit | 2 | Lanes between 3m and 3.2m
and assume Motor Traffic Flow
<2000pcu/24hr and 20mph
speed limit | 2 | Lanes between 3m and 3.2m
and assume Motor Traffic Flow
<2000pcu/24hr and 20mph
speed limit | 2 | Lanes between 3m and 3.2m
and assume Motor Traffic Flow
<2000pcu/24hr and 20mph
speed limit | | | traffic volumes | high volumes of motor vehicles. This is particularly important at
points where risk of collision is greater, such as at junctions. Where speed differences and high motor vehicle flows cannot be | | or >5% HGV Cyclists sharing | AADT and
2-5%HGV
Cyclists in | <2% HGV Cyclists in cycle | Cyclists on | 2 | Lanes between 3m and 3.2m
and assume Motor Traffic Flow
<2000pcu/24hr and 20mph
speed limit | 2 | Lanes between 3m and 3.2m
and assume Motor Traffic Flow
<2000pcu/24hr and 20mph
speed limit | 2 | Lanes between 3m and 3.2m
and assume Motor Traffic Flow
<2000pcu/24hr and 20mph
speed limit | 2 | Lanes between 3m and 3.2m
and assume Motor Traffic Flow
<2000pcu/24hr and 20mph
speed limit | | | collision | where speed unirentees are night motor vernice inovergative. See Table 6.2. This separation can be achieved at varying degrees through orthogonal cyte lanes, hybrid tracks and off-road provision. Such segregation should reduce the risk of collision from beside or behind the cyclist. | risk of collision alongside
or from behind | Cyclists sharing carriageway -
nearside lane
in critical range
between 3.2m
and 3.9m wide
and traffic
volumes prevent
motior yehicles
moving easily
into opposite
lane to pass
cyclists. | Cyclests in unrestricted traffic lanes outside critical range (3.2m to 3.9m) or in cycle lanes less than 1.8m wide. | Cyclass In Cycle lanes at least 1.8m wide on carriageway; 85th percentile motor traffic speed max 30mph. | Cyclists or
route away
from motor
traffic (off road
provision) or in
off-carriageway
cycle track.
Cyclists in
hybrid/light
segregated
track; 85th
percentile motor
traffic speed
max 30mph. | 2 | Lanes between 3m and 3.2m and assume Motor Traffic Flow <2000pc;24h and 20mph speed limit | 2 | Lanes between 3m and 3.2m and assume Motor Traffic Flow <2000pcu/24h and 20mph speed limit | 2 | Lanes between 3m and 3.2m and assume Motor Traffic Flow <0000pcu24h and 20mph speed limit | 2 | Lanes between 3m and 3.2m and assume Motor Traffic Flow <2000pcu/24hr and 20mph speed limit | | | | A high proportion of collisions involving cyclists occur at
junctions. Junctions therefore need particular attention to reduce
the risk of collision.
Junction treatments include: - Minor/side roads: cyclist priority and/or speed reduction across
side roads - Major roads: separation of cyclists from motor traffic through
junctions. | | | Side road
junctions frequent
and/or untreated.
Major junctions,
conflicting
cycle/motor traffic
movements not
separated | effective entry
treatments. Major
junctions, principal | Side roads closed
or treated to blend
in with footway.
Major junctions,
all conflicting
cycle/motor traffic
streams
separated. | o | Side road junctions untreated | 2 | Continuous footways across sideroads | 2 | Continuous footways across sideroads | 2 | Continuous footways across sideroads | | | Avoid complex
design | Avoid complex designs which require users to process large
amounts of information. Good network design should be self-
explanatory and self-evident to all road users. All users should
understand where they and other road users should be and what
movements they might make. | 14.Legible road markings
and road layout | | Faded, old,
unclear, complex
road
markings/unclear
or unfamiliar road
layout | improved | Clear,
understandable,
simple road
markings and
road layout | 1 | Faded road markings | 2 | New road markings | 2 | New road markings | 2 | New road markings | | | Consider and reduce risk from
kerbside activity | Routes should be assessed in terms of all multi-functional uses of a street including car parking, bus stops, parking, including collision with opened door. | activity | Narrow cycle
lanes <1.5m or
less (including any
buffer) alongside
parking/loading | with kerbside
activity (e.g.
nearside cycle
lane <2m
(including buffer)
wide alongside
kerbside parking) | Some conflict with
kerbside activity -
e.g. less frequent
activity on nearside
of cyclists, min 2m
cycle lanes including
buffer. | | 0 | Excessive unrestricted parking along the footway - On-street quiet route, no cycle lanes required. | 1 | Reduced level of parking along
the footway - On-street quiet
route, no cycle lanes required. | 1 | Reduced level of parking along
the footway - On-street quiet
route, no cycle lanes required. | 1 | Reduced level of parking along
the footway - On-street quiet
route, no cycle lanes required. | | | | Wherever possible routes should include "evasion room" (such as grass wriges) and avoid any unnecessary physical hazards such as guardrait, build outs, etc. to reduce the severity of a collision should it occur. | 16.Evasion room and unnecessary hazards | | Cyclists at risk of
being trapped by
physical hazards
along more than
half of the route. | The number of
physical hazards
could be further
reduced | The route includes
evasion room and
avoids any
physical hazards. | 2 | No features within the carriageway. | 2 | No features within the carriageway. | 1 | Proposed buildouts in the carraigeway. | 2 | No features within the carriageway. | | | | Density of defects including non cycle friendly ironworks,
raised/sunken covers/gullies, potholes, poor quality carriageway
paint (e.g. from previous cycle lane) | 17.Major and minor defects | | Numerous minor
defects or any
number of major
defects | Minor and occasional defects | Smooth high grip
surface | 1 | CKD but defects in road surface | 1 | CKD but defects in road surface | 1 | CKD but defects in road surface | 2 | CKD and micro-resurfacing | | Comfort | Surface
quality | Pavement or carriageway construction providing smooth and level surface | 18.Surface type | | Any bumpy,
unbound,
slippery, and
potentially
hazardous
surface. | Hand-laid
materials,
concrete
paviours with
frequent joints. | Machine laid
smooth and
non-slip surface
- e.g. Thin
Surfacing, or
firm and closely
jointed
blocks
undisturbed by
turning heavy
vehicles. | 1 | Concrete with frequent joints | 1 | Concrete with frequent joints | 1 | Concrete with frequent joints | 2 | Micro-resurfacing | | | Effective width without conflict | Cyclists should be able to comfortably cycle without risk of conflict with other users both on and off road. | 19.Desirable minimum widths according to volume of cyclists and route type (where cyclists are separated from motor vehicles). | | the route includes
cycle provision
with widths which
are no more than
25% below
desirable
minimum values. | of the route includes
cycle provision with
widths which are no
more than 25%
below desirable
minimum | maintained
throughout whole
route | 2 | Meets criteria for quiet street | | | Wayfinding | Non-local cyclists should be able to navigate the routes without
the need to refer to maps. | 20.Signing 21.Lighting | | Route signing is
poor with signs
missing at key
decision points.
Most or all of | Gaps identified in
route signing which
could be improved
Short and infrequent | Route is well
signed with signs
located at all
decision points
and junctions | 1 | Not currently cycle route | 2 | Proposed additional signage and road marking | 2 | Proposed additional signage and road marking | 2 | Proposed additional signage and road marking | | | Social safety and perceived vulnerability of | Routes should be appealing and be perceived as safe and usable. Well used, well maintained, lit, overlooked routes are | 21.Lighting 22.Isolation | | route is unlit | unlit/poorly lit
sections
Route is mainly | highway
standards
throughout
Route is | 2 | Route is well lit throughout. | | Attractiveness | user Impact on | more attractive and therefore more likely to be used. Introduction of dedicated on-road cycle provision can enable | 23.lmpact on pedestrians | | | overlooked and is
not far from activity
throughout its length
No impact on | overlooked
throughout its
length | 2 | Route overlooked by schools and
residential property | 2 | Route overlooked by schools and
residential property | 2 | Route overlooked by schools and residential property | 2 | Route overlooked by schools and residential property | | | pedestrians,
including people
with disabilities | people to cycle on-road rather than using footways which are not
suitable for shared use. Introducing cycling onto well-used
footpaths may reduce the quality of provision for both users,
particularly if the shared use path does not meet recommended
widths. | Pedestrian Comfort Level
based on Pedestrian Comfort
guide for London (Section
4.7) | | negatively on
pedestrian
provision,
Pedestrian
Comfort is at
Level C or below. | pedestrian provision
or Pedestrian
Comfort Level
remains at B or
above. | provision
enhanced by
cycling provision,
or Pedestrian
Comfort Level
remains at A | 1 | Existing | 2 | Scheme proposes widened 3m footways. | 2 | Scheme proposes widened 3m footways. | 2 | Scheme proposes widened 3m footways. | | | Minimise street
clutter | Signing required to support scheme layout | 24.Street Clutter Signs are informative and consistent but not overbearing or of inappropriate size | | Large number of
signs needed,
difficult to follow
and/or leading to
clutter | Moderate amount of
signing particularly
around junctions. | wayfinding
purposes only and
not causing
additional
obstruction. | 1 | School warning and stopping
restriction signs, excessive use
of wooden bollards | 2 | Reduced street clutter and
improved public realm | 2 | Reduced street clutter and improved public realm | 2 | Reduced street clutter and improved public realm | | | Secure cycle
parking | Ease of access to secure cycle parking within businesses and on street | 25. Cycle parking Evidence of bicycles parked to street furniture or cycle stands | | No additional
cycle parking
provided or
inadequate
provision in
insecure none
overlooked areas | Some secure cycle
parking provided but
not enough to meet
demand | | 33 | No cycling parking | 0 | No proposed cycle parking | 1 38 | No proposed cycle parking, opportunity to include as part of parklet? | 1 41 | No proposed cycle parking, opportunity to include as part of parklet? | | | | | | | | Pass/F
Any | Max possible score Audit % score Fail (70% threshold) Critical Fails? (Y/N) nber of Critical Fails | 50
66%
Fail
No
0 | | 50
76%
Pass
No
0 | | 50
76%
Pass
No | | 50
82%
Pass
No
0 | | | Nu | mber of Critical Fails | 0 | | 0 | | 0 | | 0 | | |----------------|------------------------|------------------------------|------------------|------------------------------|------------------|------------------------------|------------------|--------------------------|------------------| | Criteria | Max Score | Sub-
criteria
Existing | % score Existing | Sub-
criteria
Proposed | % score Proposed | Sub-
criteria
Existing | % score Proposed | Sub-criteria
Proposed | % score Proposed | | Coherence | 6 | 4 | 67% | 4 | 67% | 4 | 67% | 4 | 67% | | Directness | 10 | 7 | 70% | 5 | 50% | 5 | 50% | 5 | 50% | | Safety | 16 | 11 | 69% | 15 | 94% | 14 | 88% | 15 | 94% | | Comfort | 8 | 5 | 63% | 6 | 75% | 6 | 75% | 8 | 100% | | Attractiveness | 10 | 6 | 60% | 8 | 80% | 9 | 90% | 9 | 90% | | | 50 | | | | | | | | |